Inside Macintosh, Volume VI

The Format 2 'snd ' Resource

The SndPlay function can also play format 2 'snd ' resources, which are designed for use
only with the sampled sound synthesizer. The SndPlay function supports this format by
automatically opening a channel to the sampled sound synthesizer and using the bufferCmd
command to send the data contained in the resource to that synthesizer.

Figure 22-7 illustrates the fields of a format 2 'snd ' resource. The reference count field

is for your application’s use and is not used by the Sound Manager. The number of sound
commands field and the sound command fields are the same as described in a format |
resource. The last field of this resource contains the sampled sound. The first command
should be either a soundCmd command or bufferCmd command with the data offset bit
set in the command to specify the location of this sampled sound header.

Listing 22-6 shows a resource specification that illustrates the structure of a format 2 'snd '

resource; it contains the information necessary to create a sound with SndPlay and the
sampled sound synthesizer.

Listing 22-6. A format 2 'snd ' resource

data 'snd ' (9003, "Pig Sgueal", purgeable) {
sro002" /*format type*/
s*ooo0" /*reference count for application's use*/
S"00e1L" /*number of sound commands that follow (1)*/
segos1" /*command 1--bufferCmd*/
s$*ooo0" /*paraml = 0%/
$"0000000E" /*param2 = offset to sound header (14 bytes)*/
$"00000000" /*pointer to data (it follows immediately)*/
$"00000BB8" /*number of bytes in sample (3000 bytes)*/
S"S56EE8BA3" /*sampling rate of this sound (22 kHz)*/
S$"000007DO" /*starting of the sample's loop point*/
$"00000898" /*ending of the sample's loop point*/
sTopr /*standard sample encoding*/
Shgs sy /*baseFrequency at which sample was taken*/

$"80 80 81 82 84 87 93 84" /*the sampled sound data*/

S"6F 68 6D 65 72 7B 82 88"

$"91 8E 8D 8F 86 7E 7C 79"

S"BF 6D 71 70 70 79 7F 81"

$"89 8F 8D 8B" /*rest of data omitted in this example*/
}i

For a complete explanation of the fields following the sampling rate field, see the description
of the sampled sound header in “Playing Sampled Sounds.” To play the sounds described by
these resources, see the instructions given in “Playing 'snd ' Resources.” Both sections occur
later in this chapter.

Sound Files

Although most sampled sounds that you want your application to produce can be stored as
resources of type 'snd ', there are times when it is preferable to store sounds in sound
files, not in resources. For example, it is usually easier for different applications to share

22-24 Sound Storage Formats

The Sound Manager

files than it is to share resources. So if you want your application to play sampled sounds
created by other applications (or if you want other applications to be able to play sampled
sounds created by your application), it might be better to store the sampled sound data in a
file, not in a resource. Similarly, if you are developing versions of your application that are
intended to run on other operating systems, you might need a method of storing sounds that
is independent of the Macintosh Operating System and its reliance on resources to store data.
Generally, it is easier to transfer data stored in files from one operating system to another
than it is to transfer data stored in resources.

There are other reasons you might want to store some sampled sounds in files and not in
resources. If you have a very large sampled sound, it may be impossible to create a resource
large enough to hold all the audio data. Resources are limited in size by the structure of
resource files (and in particular because offsets to resource data are stored as 24-bit quantities).
Sound files, however, can be much larger because the only size limitations are those imposed
by the file system on all files. If the sampled data for some sound occupies more than about

a half megabyte of space, you should probably store the sound as a file.

To address these various needs, Apple and several third-party developers have defined two
sampled sound file formats, known as the Audio Interchange File Format (AIFF) and
the Audio Interchange File Format extension for Compression (AIFF-C). The names emphasize
that the formats are designed primarily as data interchange formats. However, you should find
both AIFF and AIFF-C flexible enough to use as data storage formats as well. Even if you
choose to use a different storage format, your application should be able to convert to and from
AIFF and AIFF-C if you want to facilitate sharing of sound data among applications.

(44

v
=
=
="
e
p—
0
=
b
1]
(¢]
]

The main difference between the AIFF and AIFF-C formats is that AIFF-C allows you to
store both compressed and noncompressed audio data, whereas AIFF allows you to store
noncompressed audio data only. The AIFF-C format is more general than the AIFF format
and 1s easier to modify. The AIFF-C format can be extended to handle new compression types
and application-specific data. As a result, you should revise any application that currently
supports only AIFF files to also support AIFF-C files. An application that currently reads
AIFF files should also be able to read AIFF-C files. An application that currently writes AIFF
files should also be able to write AIFF-C files. It is recommended that the default write format
be AIFF-C. Table 22-2 summarizes the capabilities of the AIFF and AIFF-C file formats.

Table 22-2. AIFF and AIFF-C capabilities

File Read Read Write Write

type sampled compressed sampled compressed
AIFF Yes No Yes No

AIFF-C Yes Yes Yes Yes

The enhanced Sound Manager includes support for reading and writing both AIFF and AIFF-C
files. You can play from disk a sampled sound stored in a file of type AIFF or type AIFF-C by
opening that file and passing its file reference number to the SndStartFilePlay function. (If the
file is of type AIFF-C and if the data is compressed, the data is automatically expanded during
playback.) You can create files of type AIFF or AIFF-C by calling the SndRecordToFile and
SPBRecordToFile functions. SndRecordToFile creates an AIFF or AIFF-C file, complete

with compressed sound data and all the needed chunks. SPBRecordToFile, however, simply
records audio data (compressing it if necessary) and saves that data into a specified file.
SPBRecordToFile does not create any AIFF or AIFF-C chunks. You can, however, use the
SetupAIFFHeader function to create the appropriate headers before you call SPBRecordToFile.

Sound Storage Formats — 22-25

Inside Macintosh, Volume VI

Note: Both SndRecordToFile and SPBRecordToFile automatically compress the
recorded audio data if instructed to do so. Neither function does any expansion.

The following six sections describe in detail the structure of AIFF and AIFF-C files. Both
of these types of sound files are collections of “chunks” that define characteristics of the
sampled sound or other relevant data about the sound. Currently, the AIFF and AIFF-C
specifications include the following chunk types.

Chunk types

Form Chunk

Format Version Chunk

Common Chunk

Sound Data Chunk
Marker Chunk
Comments Chunk

Sound Accelerator Chunk
Instrument Chunk

MIDI Data Chunk

Audio Recording Chunk
Application Specific Chunk
Name Chunk

Author Chunk

Copyright Chunk
Annotation Chunk

Contains all the other chunks of an AIFF or AIFF-C file

Contains an indication of the version of the AIFF-C
specification according to which this file is structured
(AIFF-C only)

Contains information about the sampled sound, such as the
sampling rate and sample size

Contains the sample frames that comprise the sampled sound
Contains markers that point to positions in the sound data
Contains comments about markers in the file

Contains information intended to allow applications to
accelerate the decompression of compressed audio data

Defines basic parameters that an instrument (such as a
sampling keyboard) can use to play back the sound data

Contains MIDI data

Contains information pertaining to audio recording devices
Contains application-specific information

Contains the name of the sampled sound

Contains one or more names of the authors (or creators) of the
sampled sound

Contains a copyright notice for the sampled sound

Contains a comment

The following sections document only four of the kinds of chunks that can occur in AIFF and
AIFF-C files. A more complete specification of AIFF files is available from APDA.

Chunk Organization and Data Types

An AIFF or AIFF-C file is a file that is organized as a collection of “chunks” of data. For
example, there is a Common Chunk that specifies important parameters of the sampled
sound, such as its size and sample rate. There is also a Sound Data Chunk that contains the

22-26

Sound Storage Formats

The Sound Manager

actual audio samples. A chunk consists of some header information followed by some data.
The header information consists of a chunk ID number and a number that indicates the size of
the chunk data. In general, therefore, a chunk has the structure illustrated in Figure 22-9.

ckiD
. -header info
ckSize
<
data -data bytes

Figure 22-9. The general structure of a chunk

The header information of a chunk has this structure:

)

o

TYPE ChunkHeader = 2
RECORD g

ckID: ID; {chunk type ID} ;

ckSize: LonglInt {number of bytes of data} o

END: =

END;)

8

-

The cKkID field specifies the chunk type. An ID is a 32-bit concatenation of any four printable
ASCII characters in the range "' (space character, ASCII value $20) through '~' (ASCII
value $7E). Spaces cannot precede printing characters, but trailing spaces are allowed.
Control characters are not allowed. You can specify values for the four types of chunks
described later by using these constants;

CONST FormID = 'FORM'; {chunk ID for Form Chunk}
FormatVersionID = 'FVER'; {chunk ID for Format Version Chunk}
CommonID = '"COMM'; ({chunk ID for Common Chunk}
SoundDatalID = 'SSND'; {chunk ID for Sound Data Chunk}

The ckSize field specifies the size of the data portion of a chunk and does not include the
length of the chunk header information.

The Form Chunk

The chunks that define the characteristics of a sampled sound and that contain the actual
sound data are grouped together into a container chunk, known as the Form Chunk.
The Form Chunk defines the type and size of the file and holds all remaining chunks in
the file. The chunk ID for this container chunk is 'FORM'.

Sound Storage Formats — 22-27

Inside Macintosh, Volume VI

A chunk of type 'FORM' has this structure:

TYPE ContainerChunk =

RECORD
ckID: LI {'"FORM' }
ckSize: LongInt; {number of bytes of data}
formType: ID {type of file}

END;

The fields of this chunk have the following meanings:

Field descriptions

ckiD The ID of this chunk. For a Form Chunk, this ID is 'FORM',

ckSize The size of the data portion of this chunk. Note that the data portion of a
Form Chunk is divided into two parts, formType and the chunks that
follow the formType field. These chunks are called local chunks because
their chunk IDs are local to the Form Chunk.

formType The type of audio file. For AIFF files, formType is 'AIFF'. For AIFF-C
files, formType is 'AIFC'.

The local chunks can occur in any order in a sound file. As a result, your application should
be designed to get a local chunk, identify it, and then process it without making any assump-
tions about what kind of chunk it is based on its order in the Form Chunk.

The Format Version Chunk

One difference between the AIFF and AIFF-C file formats is that files of type AIFF-C
contain a Format Version Chunk and files of type AIFF do not. The Format Version Chunk
contains a timestamp field that indicates when the format version of this AIFF-C file was
defined. This in turn indicates what format rules this file conforms to and allows you to
ensure that your application can handle a particular AIFF-C file. Every AIFF-C file must
contain one and only one Format Version Chunk.

In AIFF files, there is no Format Version Chunk.

In AIFF-C files, a Format Version Chunk has this structure:

TYPE FormatVersionChunk =

RECORD

ckID: ID; {'FVER'}

ckSize: LonglInt; {4}

timestamp: LongInt {date of format version}
END;

22-28 Sound Storage Formats

The Sound Manager

The fields of this chunk have the following meanings:

Field descriptions

ckID The ID of this chunk. For a Format Version Chunk, this ID is 'FVER..

ckSize The size of the data portion of this chunk. This value is always 4 in a
Format Version Chunk because the timestamp field is 4 bytes long (the
8 bytes used by ckID and ckSize fields are not included).

timestamp An indication of when the format version for this kind of file was
created. The value indicates the number of seconds since January 1,
1904, following the normal time conventions used by the Macintosh
Operating System. (See the Operating System Utilities chapter of
Volume II for several routines that allow you to manipulate timestamps.)

You should not confuse the format version timestamp with the creation date of the file. The
format version timestamp indicates the time of creation of the version of the format according
to which this file is structured. Because Apple defines the formats of AIFF-C files, only
Apple can change this value. The current version is defined by a constant:

CONST AIFCVersionl = SA2805140; {2726318400 in decimal}

8]
¥
7!
=]
=
=]
(=5
=
e
)
=
0
]
(1]
-

The Common Chunk

Every AIFF and AIFF-C file must contain a Common Chunk that defines some fundamental
characteristics of the sampled sound contained in the file. Note that the format of the Common
Chunk is different for AIFF and AIFF-C files. As a result, you need to determine the type

of file format (by inspecting the formType field of the Form Chunk) before reading the

Common Chunk.

For AIFF files, the Common Chunk has this structure:

TYPE CommonChunk =

RECORD
ckID: ID; {'COMM' }
ckSize: LongInt; {size of chunk data}
numChannels: Integer; {number of channels}
numSampleFrames: LonglInt; {number of sample frames}
sampleSize: Integer; {number of bits per sample}
sampleRate: Extended {number of frames per second}
END;

For AIFF-C files, the Common Chunk has this structure:

TYPE ExtCommonChunk =

RECORD
ckID: ID:; {'COMM" }
ckSize: LongInt; {gsize of chunk data}

Sound Storage Formats — 22-29

Inside Macintosh, Volume VI

numChannels: Integer; {number of channels}
numSampleFrames: LonglInt; {number of sample frames}
sampleSize: Integer; {number of bits per sample}
sampleRate: Extended; {number of frames per second}
compressionType: ID; {compression type ID}
compressionName: PACKED ARRAY[0..0] OF Byte
{compression type name}
END;

The fields that exist in both types of Common Chunk have the following meanings:

Field descriptions

ckID

ckSize

numChannels

numSampleFrames

sampleSize

sampleRate

The ID of this chunk. For a Common Chunk, this ID is 'COMM'.

The size of the data portion of this chunk. In AIFF files, this field is
always 18 in the Common Chunk because the 8 bytes used by the
ckID and ckSize fields are not included. In ATFF-C files, this size is
22 plus the number of bytes in the compressionName string.

The number of audio channels contained in the sampled sound. A
value of 1 indicates monophonic sound; a value of 2 indicates stereo
sound; a value of 4 indicates four-channel sound, and so forth. Any
number of audio channels may be specified. The actual sound data is
stored elsewhere, in the Sound Data Chunk.

The number of sample frames in the Sound Data Chunk. Note that

this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For noncompressed
sound data, the total number of sample points in the file is
numChannels * numSampleFrames. (See the discussion of the

Sound Data Chunk in the following section for a definition of a

sample frame.)

The number of bits in each sample point of noncompressed sound
data. The sampleSize field can contain any integer from 1 to 32. For
compressed sound data, this field indicates the number of bits per
sample in the original sound data, before compression.

The sample rate at which the sound is to be played back, in sample
frames per second.

An AIFF-C Common Chunk includes two fields that describe the type of compression (if
any) used on the audio data:

Field descriptions

compressionType

compressionName

22-30

The ID of the compression algorithm, if any, used on the sound data.

A human-readable name for the compression algorithm ID specified in
the compressionType field. This string is useful when putting up alert
boxes (perhaps because a necessary decompression routine is missing).

Sound Storage Formats

The Sound Manager

Remember to pad the end of this array with a byte having the value 0 if
the length of this array is not an even number (but do not include the
pad byte in the count).

Here are the currently available compression IDs and their associated compression names:

compressionType compressionName Description

'NONE' ‘not compressed' Noncompressed samples
'ACE2! 'ACE 2-to-1' [IGS® 2-to-1 compressed
'"ACES8' 'ACE 8-to-3' [IGS 8-to-3 compressed
'MAC3' 'MACE 3-to-I' Macintosh 3-to-1 compressed
'MAC6' 'MACE 6-to-1' Macintosh 6-to-1 compressed

You can define your own compression types, but you should register them with Apple.

The Sound Data Chunk

(%]
[\
The Sound Data Chunk contains the actual sample frames that make up the sampled w
sound. The Sound Data Chunk has this structure: E
2
TYPE SoundDataChunk = g‘
RECORD B
ckID: ID; {'SSND"' } 2
ckSize: LongInt; {size of chunk data}
offset: LongInt; {offset to sound data}
blockSize: LongInt {size of alignment blocks}
END;

The fields in a Sound Data Chunk have the following meanings:

Field descriptions

ckiD
ckSize

offset

blockSize

The ID of this chunk. For a Sound Data Chunk, this ID is 'SSND'.

The size of the data portion of this chunk. This size does not include
the 8 bytes occupied by the values in the ckID and the ckSize fields. If
the data following the blockSize field contains an odd number of
bytes, a pad byte with a value of 0 is added at the end to preserve an
even length for this chunk. If there is a pad byte, it is not included in
the ckSize field.

An offset (in bytes) to the beginning of the first sample frame in the
chunk data. Most applications do not need to use the offset field and
should set it to 0.

The size (in bytes) of the blocks to which the sound data is aligned.
This field is used in conjunction with the offset field for aligning
sound data to blocks. As with the offset field, most applications do not
need to use the blockSize field and should set it to 0.

Sound Storage Formats ~ 22-31

Inside Macintosh, Volume VI

The format of the sound data following the blockSize field depends on whether the data is
compressed or noncompressed, which you can determine by inspecting the compressionType
field in the Common Chunk. If the compression type is 'NONE', then each sample point in a
sample frame is a linear, two’s complement value. Sample points are from 1 to 32 bits wide, as
determined by the sampleSize parameter in the Common Chunk. Each sample point is stored in
an integral number of contiguous bytes. Sample points that are from 1 to 8 bits wide are stored
in 1 byte; sample points that are from 9 to 16 bits wide are stored in 2 bytes, and so forth.
When the width of a sample point is less than a multiple of 8 bits, the sample point data is left
aligned (using a shift-left instruction), and the low-order bits at the right end are set to 0.

For multichannel sounds, a sample frame is an interleaved set of sample points. (For mono-
phonic sounds, a sample frame is just a single sample point.) The sample points within a
sample frame are interleaved by channel number. For example, the sound data for a stereo,
noncompressed sound is illustrated in Figure 22-10.

Sample Sample Sample
frame 0 frame 1 frame n
chi1| ch2 ch1i]| ch2 | I chi| ch2 I

= One sample point

Figure 22-10. Interleaving stereo sample points

Sample frames are stored contiguously in order of increasing time. There are no pad bytes
between samples or between sample frames.

Note: The Sound Data Chunk is required unless the numSampleFrames field in

the Common Chunk is 0. A maximum of one Sound Data Chunk can appear in an
AIFF or AIFF-C file.

Reading and Writing Sound Files

Figure 22-11 illustrates an AIFF-C format file that contains approximately 4.476 seconds of
8-bit monophonic sound data sampled at 22 kHz. The sound data is not compressed. Note
that the number of sample frames in this example is odd, forcing a pad byte to be inserted
after the sound data. This pad byte is not reflected in the ckSize field of the Sound Data

C;lunk, which means that special processing is required to correctly determine the actual
chunk size.

On a Macintosh computer, the Form Chunk (and hence all the other chunks in an AIFF or
AIFF-C file) is stored in the data fork of the file. The file type of an AIFF format file is
'AIFF" and the file type of an AIFF-C format file is 'AIFC'. Macintosh applications should
not store any information in the resource fork of an AIFF or AIFF-C file because that infor-
mation might not be preserved by other applications that edit sound files.

22-32 Sound Storage Formats

The Sound Manager

FORM AIFC file kD Y| Flo[R M|
ckSize §| 99690 |
foomType §[A[1 [F [C
Format ckiD §1 F|v |E [R
Version ckSize || 4)
Chunk timestamp | [2726318400 |
Common CEID [clolm]u |
Chunk ckSize | 38 |
numChannels
numSampleFrames || 99611 |
sampleSize
sampleRate || 22254.54 |
compressionType §[N[O[NJ[E |
compressionName f[14[nf[oft] [c Jo[m[p[rfe[s][s[e[d[0] pu
KID =
Sound Data C, LSlSINID l 72
Chunk ke)| Too6id T :
offset || 0 | =
; =
blockSize || 0] 5
o W =
sounddata [T T T T | 00l 0
[t . ~ o
padbyte [0 | sample frames 99611th &

Figure 22-11. A sample AIFF-C file

Every Form Chunk must contain a Common Chunk and every AIFF-C file must contain a
Format Version Chunk. In addition, if the sampled sound has a length greater than 0, there
must be a Sound Data Chunk in the Form Chunk. All other chunk types are optional. Your
application should be able to read all the required chunks if it uses AIFF or AIFF-C files,
but it can choose to ignore any of the optional chunks.

When reading or writing AIFF or AIFF-C files, you should keep the following points
in mind:

m Remember that the local chunks in an AIFF or AIFF-C file can occur in any order. An
application that reads these types of files should be designed to get a chunk, identify it,
and then process it without making any assumptions about what kind of chunk it is
based on its order in the Form Chunk.

m If your application allows modification of a chunk, then it must also update other
chunks that may be based on the modified chunk. However, if there are chunks in the
file that your application does not recognize, you must discard those unrecognized
chunks. Of course, if your application is simply copying the AIFF or AIFF-C file
without any modification, you should copy the unrecognized chunks, too.

Sound Storage Formats ~ 22-33

Inside Macintosh, Volume VI

m You can get the clearest indication of the number of sample frames contained in an AIFF
or AIFE-C file from the numSampleFrames parameter in the Common Chunk, not from
the ckSize parameter in the Sound Data Chunk. The ckSize parameter is padded to
include the fields that follow it, but it does not include the byte with a value of 0 at the
end if the total number of sound data bytes is odd.

m Remember that each chunk must contain an even number of bytes. Chunks whose total
contents would yield an odd number of bytes must have a pad byte with a value of 0
added at the end of the chunk. This pad byte is not included in the ckSize parameter.

m Remember that the ckSize parameter of any chunk does not include the first 8 bytes of
the chunk (which specify the chunk type).

USING THE SOUND MANAGER

The Sound Manager provides a wide range of methods for creating sound and manipulating
audio data on the Macintosh. Usually, your application needs to use only a few of the many
routines or sound commands that are available. You can also use Sound Manager routines to
record sounds through any available sound input hardware.

The Sound Manager routines can be divided into high-level routines and low-level routines.
The high-level routines (like SndRecord, SndPlay, and SysBeep) give you the ability to
produce very complex audio output at very little programming expense. The next section
shows how your application can produce sounds simply by obtaining a handle to an exist-
ing 'snd ' resource and passing that handle to the SndPlay function. Moreover, if the data
in the 'snd ' resource is stored in a compressed format, SndPlay automatically expands it
for play-back in real time without further intervention from your application.

Although the high-level Sound Manager routines are sufficient for many applications, low-
level Sound Manager routines are available to provide your application with much greater
control over sound recording and production than is provided by the high-level routines.
Using these low-level routines, your application can record directly from sound input
devices, allocate and release sound channels, queue sound commands to a channel or
bypass a sound queue altogether, perform modifications on sound data and commands
sent into a channel, create and mix multiple channels of sound, compress and expand audio
data, disable and enable the system alert sound, obtain information about current sound
activity, and play sounds continuously from disk.

Some of these operations are carried out by specialized low-level routines, but most of
them are accomplished by passing appropriate sound commands to the SndDoCommand,
SndDolmmediate, and SndControl functions. For example, your application can alter the
pitch of a sampled sound that is currently playing by calling SndDoIlmmediate with the
rateCmd command as one of its parameters.

Some of the Sound Manager routines and commands cannot be called at interrupt time because
they attempt to allocate or release memory. In particular, the routines SndNewChannel,
SndDisposeChannel, SndAddModifier, SysBeep, SndPlay, SndStartFilePlay, SndRecord,
and SndRecordToFile cannot be called at interrupt time. In addition, callback procedures,

22-34 Using the Sound Manager

